T-SQL Performance Optimization | CONFIDENTIAL

T-SQL PERFORMANCE
OPTIMIZATION GUIDE

Query Tuning • Statistics • Execution Plans • Best Practices

Version 1.0 | January 2026

Table of Contents

1. Performance Fundamentals
Query performance in Fabric Warehouse depends on efficient query design, proper statistics, and understanding the distributed query engine. This guide covers optimization techniques for T-SQL workloads.
1.1 Query Processing
1. Parser: Validates SQL syntax
1. Optimizer: Generates execution plan
1. Statistics: Provides cardinality estimates
1. Executor: Runs the chosen plan
1. Result Cache: Returns cached results when available
1.2 Performance Factors
	Factor
	Impact
	Control

	Data Volume
	More data = longer scans
	Partitioning, filtering

	Query Complexity
	Joins, aggregations add overhead
	Query design

	Statistics
	Poor estimates = bad plans
	Update statistics

	Concurrency
	Resource contention
	Workload management

	Data Types
	Implicit conversions cost
	Match types

2. Query Design
Write efficient queries by following these design patterns.
2.1 Select Only Needed Columns
-- Bad: Select all columns
SELECT * FROM fact_claims;

-- Good: Select specific columns
SELECT claim_id, member_id, paid_amount
FROM fact_claims;
2.2 Filter Early
-- Bad: Filter after join
SELECT f.*, d.member_name
FROM fact_claims f
JOIN dim_member d ON f.sk_member_id = d.sk_member_id
WHERE f.service_date >= '2024-01-01';

-- Better: Use CTE to filter first
WITH filtered_claims AS (
 SELECT * FROM fact_claims
 WHERE service_date >= '2024-01-01'
)
SELECT f.*, d.member_name
FROM filtered_claims f
JOIN dim_member d ON f.sk_member_id = d.sk_member_id;
2.3 Avoid Functions on Columns
-- Bad: Function prevents index use
SELECT * FROM fact_claims
WHERE YEAR(service_date) = 2024;

-- Good: Use range comparison
SELECT * FROM fact_claims
WHERE service_date >= '2024-01-01'
 AND service_date < '2025-01-01';
2.4 Use EXISTS vs IN
-- Less efficient for large lists
SELECT * FROM dim_member
WHERE member_id IN (SELECT member_id FROM active_members);

-- More efficient with EXISTS
SELECT * FROM dim_member d
WHERE EXISTS (
 SELECT 1 FROM active_members a
 WHERE a.member_id = d.member_id
);

3. Join Optimization
3.1 Join Order
Start with the smallest table when possible to reduce intermediate results.
-- Place smaller table first when using LEFT JOIN
SELECT d.member_name, COUNT(*) as claim_count
FROM dim_member d -- Smaller dimension
LEFT JOIN fact_claims f ON d.sk_member_id = f.sk_member_id
GROUP BY d.member_name;
3.2 Join Predicates
-- Bad: Non-equality predicate
SELECT * FROM table1 t1
JOIN table2 t2 ON t1.id >= t2.start_id AND t1.id < t2.end_id;

-- Good: Equality predicate
SELECT * FROM table1 t1
JOIN table2 t2 ON t1.id = t2.id;
3.3 Avoid Cartesian Products
-- Bad: Missing join condition creates Cartesian
SELECT * FROM table1, table2;

-- Good: Explicit join condition
SELECT * FROM table1 t1
INNER JOIN table2 t2 ON t1.key = t2.key;
3.4 Join Type Selection
	Join Type
	Use When
	Performance

	INNER
	Only matching rows needed
	Generally fastest

	LEFT
	All rows from left, matching from right
	Good

	FULL OUTER
	All rows from both tables
	Most expensive

	CROSS
	Cartesian product (rare)
	Avoid if possible

4. Aggregation Optimization
4.1 Pre-Aggregate in Subqueries
-- Bad: Aggregate after large join
SELECT d.region, SUM(f.paid_amount)
FROM fact_claims f
JOIN dim_member d ON f.sk_member_id = d.sk_member_id
GROUP BY d.region;

-- Better: Pre-aggregate before join
WITH claim_totals AS (
 SELECT sk_member_id, SUM(paid_amount) as total_paid
 FROM fact_claims
 GROUP BY sk_member_id
)
SELECT d.region, SUM(c.total_paid)
FROM claim_totals c
JOIN dim_member d ON c.sk_member_id = d.sk_member_id
GROUP BY d.region;
4.2 Use Appropriate Aggregations
-- COUNT(*) vs COUNT(column)
COUNT(*) -- Counts all rows (fastest)
COUNT(column_name) -- Counts non-null values
COUNT(DISTINCT col) -- Counts unique values (expensive)

-- Avoid DISTINCT in aggregates when possible
-- Bad: Expensive distinct count
SELECT COUNT(DISTINCT member_id) FROM fact_claims;

-- Better: Use APPROX_COUNT_DISTINCT for estimates
SELECT APPROX_COUNT_DISTINCT(member_id) FROM fact_claims;
4.3 HAVING vs WHERE
-- Use WHERE to filter before aggregation
SELECT member_id, SUM(paid_amount) as total
FROM fact_claims
WHERE service_date >= '2024-01-01' -- Filter first
GROUP BY member_id
HAVING SUM(paid_amount) > 10000; -- Filter aggregates

5. Statistics Management
Statistics help the optimizer estimate row counts and choose efficient plans.
5.1 Automatic Statistics
1. Fabric Warehouse automatically creates and updates statistics
1. Statistics created on first query involving column
1. Updates triggered by data changes
1. May need manual refresh for optimal performance
5.2 Manual Statistics Update
-- Update statistics for specific table
UPDATE STATISTICS schema_name.table_name;

-- Update statistics for specific column
UPDATE STATISTICS schema_name.table_name (column_name);

-- Update with full scan for accuracy
UPDATE STATISTICS schema_name.table_name WITH FULLSCAN;
5.3 When to Update Statistics
1. After bulk data loads
1. After significant data changes (>20%)
1. When query performance degrades
1. As part of scheduled maintenance
5.4 View Statistics Information
-- View statistics for a table
DBCC SHOW_STATISTICS ('schema_name.table_name', 'statistics_name');

-- View all statistics on a table
SELECT * FROM sys.stats WHERE object_id = OBJECT_ID('schema_name.table_name');

6. Result Caching
Fabric Warehouse caches query results to accelerate repeated queries.
6.1 How Caching Works
1. First execution: Query runs and result is cached
1. Subsequent executions: Return cached result instantly
1. Cache invalidation: When underlying data changes
1. Cache scope: Per-user and per-query
6.2 Cache-Friendly Queries
-- Queries that benefit from caching:
-- 1. Repeated dashboard queries
-- 2. Reference data lookups
-- 3. Aggregations on stable data

-- Cache-unfriendly patterns:
-- 1. Queries with GETDATE() or other non-deterministic functions
-- 2. Queries on frequently changing data
-- 3. Ad-hoc queries with varying parameters
6.3 Cache Considerations
1. Cache uses memory resources
1. Large result sets may not be cached
1. Cache TTL depends on data freshness
1. Monitor cache hit rates for optimization

7. Common Anti-Patterns
7.1 Anti-Pattern: SELECT *
-- Bad
SELECT * FROM large_table;

-- Good
SELECT col1, col2, col3 FROM large_table;
Problem: Transfers unnecessary data, increases I/O and network cost.
7.2 Anti-Pattern: Implicit Conversions
-- Bad: String compared to integer
SELECT * FROM orders WHERE order_id = '12345';
-- (order_id is INT)

-- Good: Match data types
SELECT * FROM orders WHERE order_id = 12345;
Problem: Implicit conversions prevent optimal plan selection.
7.3 Anti-Pattern: OR in WHERE
-- Can be inefficient
SELECT * FROM orders
WHERE customer_id = 100 OR region = 'West';

-- Consider UNION for better performance
SELECT * FROM orders WHERE customer_id = 100
UNION
SELECT * FROM orders WHERE region = 'West';
7.4 Anti-Pattern: Correlated Subqueries
-- Bad: Subquery runs for each row
SELECT o.*,
 (SELECT MAX(order_date) FROM orders o2
 WHERE o2.customer_id = o.customer_id) as last_order
FROM orders o;

-- Good: Use window function
SELECT o.*,
 MAX(order_date) OVER (PARTITION BY customer_id) as last_order
FROM orders o;

Appendix: Document Information
	Document Title
	T-SQL Performance Optimization Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
